Fără buletin

★ Despre chimismul postminier la Roşia Montană (V)

Posted in Soluţii alternative, Teste by Marius Delaepicentru on 2013/10/18

(urmare din numărul trecut)

În episodul trecut descoperirăm că o serie de reacţii de precipitare au loc chiar în tulbureala epuizată, în timpul fazei de detoxifiere a cianurilor. În altă parte am identificat cîteva antagonisme naturale ce se pot petrece chiar şi pe valea Roşia cum ar fi inocuizarea reciprocă a arsenului cu fierul. Problematică în inocuizarea naturală de pe valea Roşia este dezorganizarea terenului. Nu totdeauna se nimereşte combinaţia potrivită de ioni care să precipite şi astfel să devină netoxici.

Pe valea Corna, toate substanţele mai mult sau mai puţin toxice se adună în iaz, unde interacţiunile sunt mult mai libere şi în acelaşi timp mai bine izolate de vecinătăţile civile. Un ion metalic toxic, plecat din uzină, sau născut în iaz, are mult mai multe şanse de a-şi găsi perechea împreună cu care să precipite. Dacă nu la coada lacului, în orice altă parte a lui. Cu alte cuvinte, iazul de decantare este o mare haldă concavă, cu mare mobilitate internă. Observaţi diferenţa faţă de şiroirile dezordonate şi de ieşirile libere din sistem de pe valea Roşia. Pe scurt, iazul formează un sistem aproape închis, unde procesele chimice şi biochimice de inocuizare indusă sau naturală, au loc mai rapid şi mai bine controlat.

Desigur, există şi limite pe care vom încerca să le aflăm. Nu va fi prea uşor, dar nici imposibil.

Iată mai jos un tabel general de screening rapid. Puteţi imagina orice substanţă rezultată din datele de intrare, după care puteţi vedea rapid dacă este sau nu solubilă. Tabelul e preluat şi reformatat cu anionii pe linii şi cu cationii pe coloană. Este doar orientativ:
Cationi si anioni

Pentru ceea ce ne interesează pe noi, am întocmit o listă cu produsele de solubilitate ale compuşilor pentru care am găsit date:
Arseniat de fier(3+) – FeAsO4 – 1.47xE-09%
Sulfocianură de plumb(2+) – Pb(SCN)2 – 0.553%
Hexacianoferat de mangan(2+) – Mn2Fe(CN)6 – 0.001882%
Hexacianoferat de plumb(2+) – PbFe(CN)6 – 0.0005991%
Sulfură de arsen (nativă) – As2S3 – 0.0004% (cca. 40mg/l)
Cianură de cadmiu – Cd(CN)2 – 0.022%
Hexacianoferat(II) de cadmiu – Cd2Fe(CN)6 – 0.00008736%
Carbonat de cadmiu – CdCO3 – 0.00003932%
Hidroxid de cadmiu – Cd(OH)2 – 7.2×E-15%
Molibdat de calciu – CaMoO4 – 0.004099%
Calcium phosphate – Ca3(PO4)2 – 0.002% (orientativ, pentru comparaţia cu arseniaţii)
Selenat de calciu – CaSeO4.2H2O – 9.22% (!)
Arseniat de cobalt(2+) Co3(AsO4)2 – 6.80×E-29mol/l
Sulfocianură de cupru(1+) – CuSCN – 8.427xE-07%
Sulfat de cobalt(2+) – CoSO4 – 36.1% (!)
Copper(I) cyanide CuCN 1.602E-09%
Hidroxid de cupru(2+) – Cu(OH)2 – 0.000001722%
Arseniat de cupru(2+) – Cu3(AsO4)2 -7.95×E-36mol/l
Oxalat de cupru – CuC2O4.2H2O – 2.1627xE-10%
Seleniat de cupru – CuSeO4 – 17.5% (!)
Selenit de cupru – CuSeO3 0.002761%
Seleniat de galiu(3+) – Ga2(SeO4)3.16H2O – 18.1% (!)
Hidroxid de galiu – Ga(OH)3 – 7.28×10-36mol/l
Hidroxid de indiu(3+) – In(OH)3 – 3.645xE-8%
Hidroxid de fier(2+) – Fe(OH)2 – 0.00005255%
Hidroxid de fier(3+) – Fe(OH)3 2.097xE-09%
Cromat de plumb(2+) – PbCrO4 – 0.0000171%
Hidroxid de plumb(2+) – Pb(OH)2 – 0.0001615%
Molibdat de plumb(2+) – PbMoO4 – 0.00001161%
Oxalat de plumb(2+) – PbC2O4 – 0.0006495%
Hidroxid de plumb(4+) – Pb(OH)4 – 7.229xE-11%
Sulfat de plumb (2+) – PbSO4 – 0.003836%
Seleniat de plumb(2+) – PbSeO4 – 1.37×10-7mol/l.

Ele pot fi mult mai multe. Le-am selectat pe cele cu solubilitate foarte scăzută, deoarece, ţinînd seama de pH-ul alcalin al apelor din iaz, formarea lor este mai probabilă.
Chiar dacă o sare solubilă se formează, fiind mediu apos, este imposibil ca anionul sau cationul să nu dea de un ion complementar cu care să precipite.

Din păcate nu am avut timp să unific unităţile de măsură. Unele substanţe sunt exprimate în moli la litru, altele, în procente. Valorile cu prea multe zerouri după virgulă sunt contrase ca puteri negative ale lui 10, exprimate ca „xE-8” de pildă, însemnînd că mantisa se împarte la 100 de milioane.

Deşi probabilitatea este mică, am listat şi cîţiva oxalaţi, ţinînd seama că dicianul este teoretic nitrilul acidului oxalic. În orice caz, formiaţii şi oxalaţii nu pot avea viaţă lungă într-un mediu în care foamea de substanţe organice este mare.

Am marcat cu semnul „(!)”, substanţe periculos de solubile, cărora nu le-am găsit un destin insolubil pe termen scurt. Este cazul seleniaţilor, care, deşi proporţional sunt în cantităţi infime, nu le-am întrevăzut reacţii de precipitare rapidă. Asta înseamnă că în apele iazului, se vor acumula seleniaţi şi posibil şi teluraţi.
Hopa!

Iată o oportunitate pentru Acad. Ionel Haiduc să propună o instalaţie de deseleniere a supernatantului din iaz, că tot plîngea după elementele valoroase. Ceva cu schimbători de ioni poate foarte bine concentra seleniul, cu costuri relativ mici.

Nu am pomenit nimic despre vanadiu şi titan. Nici nu e cazul. (Hidr)oxizii de vanadiu şi vanadaţii sunt de felul lor insolubili. Iar titanul nu va consimţi să se dizolve, în niciuna din fazele procesului tehnologic. Pentru vanadaţii şi polivanadaţii rezultaţi din oxidarea vanadiului din sulfuri, însuşi mineralul purtător de titan (probabil rutilul) reprezintă o matrice foarte bună de co-cristalizare. Afinitatea sterică reciprocă a oxizilor şi respectiv oxoanionilor celor două metale este foarte mare.

Aşadar, o mare parte din materiile toxice sunt, fie distruse, fie precipită. Dintre cele precipitate însă, rămîn periculoşi complecşii ciano-metalici, chiar dacă mai devreme sau mai tîrziu vor precipita stabil.

Hopa!

Acad. Ionel Haiduc semăna panica, bazîndu-se tocmai pe complecşii ciano-metalici. Spunea domnia-sa că la căldură se vor descompune volume uriaşe de feri- şi ferocianuri, otrăvind mediul. Date certe: la 70 de grade, fericianura abia începe să piardă apa de cristalizare. Iar de descompus, se descompune la fierbere. La altitudinea iazului, apa fierbe cam la 96 de grade. Va fi imposibilă descompunerea fericianurilor, chiar dacă întregul iaz ar fi aşezat pe o plită de 300ha.

Altfel, ferocianura de potasiu şi amoniu este folosită în zootehnie la doze de 1-15mg/kilocorp. Ceea ce înseamnă că un om de 70Kg poate înghiţi pînă la un gram de ferocianură, fără să se intoxice. Am găsit datele într-o documentaţie europeană datată 1998. Actul normativ este unul cu aplicare ocazională. Ferocianura solubilă este menită să prevină pătrunderea cesiului (radioactiv) în corpul animalului, în cazul unei catastrofe nucleare de pace. Ferocianura precipită cu cesiul, compus ce se elimină prin fecale, prevenind contaminarea internă. Aşadar, la concentraţiile mici de complecşi metalo-cianici, animalele din zonă nu ar suferi dacă ar bea accidental apă din iaz. Iar dacă unii complecşi ciano-metalici precipită cu ioni alcalini (cesiul este rudă cu sodiul şi cu potasiul) cu atît mai probabilă este precipitarea cu cationi metalelor tranziţionale.

Vom reveni la complecşii cianometalici atunci cînd vom vorbi despre chimismul pe termen lung.

(va urma)

Anunțuri

2 răspunsuri

Subscribe to comments with RSS.

  1. […] (urmare din numărul trecut) […]


Lasă un răspuns

Completează mai jos detaliile tale sau dă clic pe un icon pentru a te autentifica:

Logo WordPress.com

Comentezi folosind contul tău WordPress.com. Dezautentificare / Schimbă )

Poză Twitter

Comentezi folosind contul tău Twitter. Dezautentificare / Schimbă )

Fotografie Facebook

Comentezi folosind contul tău Facebook. Dezautentificare / Schimbă )

Fotografie Google+

Comentezi folosind contul tău Google+. Dezautentificare / Schimbă )

Conectare la %s

%d blogeri au apreciat asta: