Fără buletin

★ Despre chimismul postminier la Roşia Montană (IV)

Posted in Soluţii alternative, Teste by Marius Delaepicentru on 2013/10/16

(urmare din numărul trecut)

Facem întîi o scurtă incursiune în amplasament, pentru a ne fixa mai bine ceea ce este acid de ceea ce este alcalin.
Amplasament Google

În primplan este valea Roşia. Contururile portocalii indică cele patru cariere. (pentru persoanele mai impresionabile, cei „patru munţi” care sunt doi versanţi) Contururile galbene arată aproximativ unde vor fi halde de steril neprelucrat. Roca grosieră sterilă, se va folosi mai ales la astuparea carierelor Jig şi Orlea din partea dreaptă a văii (stînga în imagine). Apele scurse din cariere, sunt tributare, văii Roşia. Cele tehnologice, văii Corna. Apele acide vor fi numai pe valea Roşia (ca şi în prezent). Ele vor fi colectate într-un iaz mai mic, ce urmează a fi reconfigurat, de unde vor fi pompate în staţia de epurare de pe cumpăna celor două văi principale.
Pe valea Corna, cu albastru este marcat „iazul de cianuri”. (voi arăta mai tîrziu de ce între ghilimele.) În el se vor colecta şi niscai ape acide de pe haldele de steril grosier de pe versantul stîng.
Aşadar, valea Roşia va fi colectoare de ape acide, în timp ce valea Corna va colecta apele industriale alcaline şi va reţine şi sterilul măcinat, rezultat din procesul de extracţie-detoxifiere.
Organizarea spaţiului este mai detaliată în planul de amplasare din documentaţia RMGC:
Amplasament RMGC

Forma este de bumerang, cu braţele pe cele două văi. Se pot identifica cu verde ariile deneatins: stivele de sol vegetal, localităţi şi cartiere, aria protejată, monumente naturale şi cimitire. Vor mai fi două cariere, marcate cu roşu brun, una de andezit, în cotul bumerangului şi una de gresie, mai la vest, lîngă iazul de ape acide. Stiva de minereu sărac va fi chiar lîngă uzina de extracţie.

Să descriem sumar procesul de producţie. Minereul se macină fin, se amestecă cu var şi cu cianură şi se supune extracţiei. Adaosul de cărbune activ face ca metalele de interes să se concentreze în particulele de cărbune. După faza asta, partea electrochimică şi metalurgică nu ne interesează. Pentru noi, mai interesante sunt deşeurile.
Trebuie spus că la Baia Mare, tulbureala (minereu amestecat cu soluţii de chimicale) după ce se epuiza, cînd încă mai conţinea 500mg/l, se arunca direct în iaz. Altminteri, precar barat. Cumulul de nesimţiri a dus la accidentul din anul 2000.
Nu este cazul RM, unde norma internă de zvîrlire este de sub 3mg/l. Adică doar de 1/150 din ceea ce se petrecea la Baia Mare. Iar barajul va fi mai tare ca orice alt baraj de pe glob.

Cum ziceam, la Roşia Montană, partea interesantă pentru noi pe termen lung este tocmai ceea ce urmează la prelucrarea deşeurilor, deoarece, precum se ştie, în deşeuri rămîn şi cianuri nevolatile. De fapt, complecşi cianuraţi ai unor metale tranziţionale, a căror transformare ulterioară este de-a dreptul fascinantă.

Elementul cheie în tot procesul de inocuizare a deşeului este calciul. Este omniprezent. Încă de la faza de măcinare fină se adaugă var nestins. Cianura atacă sulfurile native şi eliberează anionul solubil sulfură S(2-). Prin dizolvarea piritelor ia naştere sulfura cel puţin parţială de calciu*) Ca(HS)2, care la rîndul ei, are puterea de a tăia punţile de sulf din pirite**) şi de a grăbi atacul.

Simultan, în băile de cianurare iau naştere şi tiocianaţii (numiţi şi sulfocianuri sau rodanuri) cu care încerca acad. Ionel Haiduc să sperie lumea. Tiocianaţii, la fel ca cianaţii tipici (cianuri cu oxigen în moleculă) sunt compuşi metastabili. Procedeul detox cu dioxid de sulf şi oxigen, catalizat cu ioni de cupru, face praf cam tot ce e tiocianat. Oxidarea are loc asemănător cu cea din suveica de fier(3+)-fier(2+), descrisă anterior. Cuprul divalent oxidează sulfocianura şi în acelaşi timp se reduce la cupru monovalent, ce ulterior este din nou oxidat în mediul puternic oxigenat, la cupru divalent. Iată curba destrucţiei sulfocianurilor în timp:Decrement SCN
În mai puţin de 30′, sulfocianura se duce naibii. Presupunînd că nu se duce naibii cu totul, ea este toxică în proporţie de doar 1/7 din cea a cianurilor solubile, deoarece cam toate vietăţile moştenesc gene ce fac posibilă sinteza unei enzime numite rodanază, responsabilă de detoxifierea intracelulară a sulfocianurilor. Moştenirea ne vine de pe vremea cînd atmosfera Pămîntului conţinea acid cianhidric şi era reducătoare.

Hopa!

Dacă vreţi să vă convingeţi de prezenţa sau de absenţa sulfocianurilor în iaz, într-o excursie de documentare puteţi lua o sticluţă cu soluţie diluată de clorură ferică. Dacă la amestecarea apei din iaz cu clorura ferică, conţinutul flaconuluise înroşeşte, înseamnă că încă mai sunt tiocianaţi liberi. Puţin probabil. Voi arăta şi mai jos, şi în altă parte, de ce.

Ţinînd seama de rolul cheie al ionilor de cupru în catalizarea destrucţiei toxicelor, cine a pus la punct tehnologia nu s-a bazat nici măcar pe cuprul nativ prezent în minereu. Lista de chimicale cuprinde cîteva sute de tone de piatră vînătă, ce se adaugă în procesul detox. Semnul că exploatatorul nu îşi permite să se facă doar că detoxifică.

Conform procedeului de extracţie descris în raportul de mediu, cianura liberă din tulbureală, se recirculă parţial, ceea ce reduce volumul suspensiei de tratat. De asemeni, conţinutul de cianuri din faza apoasă scade încă din prima etapă a extracţiei, datorită complexării cu ionii metalelor tranziţionale din sistem şi a conversiei cianurilor în tiocianaţi. La detoxifierea accelerată, în atmosferă de dioxid de sulf şi oxigen, alte procese favorabile se petrec: sulfaţii formaţi reduc pH-ul, dar în acelaşi timp, ionii de amoniu rezultaţi din una din reacţiile de oxidare a cianurii, îl ridică. Amoniacul, împreună cu hidrogenul sulfurat provenit din hidroliza parţială a sulfurilor solubile, au darul să precipite din nou metalele tranziţionale, fie sub formă de hidroxizi, fie direct sub formă de sulfuri.

Hopa!

Reţineţi alăturarea: H2S şi NH3, deoarece ne vom mai întîlni cu ea în iaz, în cu totul alte împrejurări.

Desigur, tiocianaţii mai au marele avantaj că, odată oxidaţi, devin radicali liberi, puternic reactivi, ce dau startul unei game largi de reacţii de oxidare atît a dioxidului de sulf şi a sulfurilor, cît şi a ionului, cian, direct în dioxid de carbon şi azot. Două gaze neotrăvitoare, din care unul are darul să precipite suplimentar ionii metalelor tranziţionale şi calciul, la carbonaţi. Excesul de ioni sulfat şi sulfit sunt însă fixaţi în faza solidă tot de către calciu.

După cum vedem, multe reacţii de precipitare au loc chiar în timpul procesului de extracţie şi detoxifiere. Ele pot continua şi se diversifică în iaz, în măsura în care încă se mai află metalice toxice în soluţie.

Într-un post viitor voi privi critic reacţiile chimice şi biochimice din ramura de inocuizare pe termen lung (valea Corna). Tot atunci voi schiţa şi un mic bilanţ de materiale pentru metalele toxice. Voi spune două vorbe şi despre extincţia lor în timp.

(va urma)

––––––-
*) sulfurile alcalino-pămîntoase au proprietatea de a rupe punţile de sulf din proteine, făcîndu-le solubile. Aşa de pildă, sulfura de bariu este folosită la epilarea cobailor, atunci cînd sunt folosiţi ca hrană pentru ţînţarii de experienţă. Pentru uz uman se folosesc compuşi organici (acid tioglocolic, ditiothreitol etc.), dar cam tot pe acelaşi mecanism acţionează.
**) în pirite, compuşi naturali, starea de oxidare a sulfului nu este întotdeauna (2-) ci adesea este (1-), prin combinarea sulfului cu el însuşi. Cum sulful este rudă cu oxigenul, piritele pot fi considerate omologii peroxizilor, substanţe instabile, în care oxigenul se leagă de el însuşi.

★ Despre chimismul postminier la Roşia Montană (II)

Posted in Soluţii alternative, Teste by Marius Delaepicentru on 2013/10/10

(continuare din numărul trecut)

Să intrăm direct în materie. Poluanţii minerali de la Roşia pot fi disociaţi doar cu scop didactic, în cationi(+) şi anioni(-). Pentru a fi însă poluanţi veritabili, ei trebuie să se afle în soluţie apoasă circulantă în afara perimetrului minier, la concentraţii (i)legale sau toxice. (Nu mă refer încă la aerosoli şi la gaze.) Ce nu e solubil în condiţii normale, nu poate fi nici poluant.
Despre căile de oprire mecanică a poluanţilor apoşi şi potenţial apoşi am vorbit în articolul precedent.

În continuare vom vorbi despre transformările chimice şi biochimice naturale, despre antagonisme, despre suveici de oxidare şi dezoxidare, despre epurare şi autoepurare, despre vaporizare şi precipitare, despre otrăvuri naturale şi otrăvuri artificiale. Un capitol separat, dar integrat în chimismul general, va fi dedicat chimismului cianurilor.

Trebuie să spunem din start că substanţă complet insolubilă nu există. Chiar şi cînd beţi ceai din cană de lut smălţuit, cîteva mii de miliarde de molecule de dioxid de siliciu şi de oxid de aluminiu înghiţiţi de fiecare dată. Pentru substanţele insolubile nu se foloseşte termenul de concentraţie, ci de produs de solubilitate (PS), exprimat în puterile negative ale lui 10. Cu cît mai negative, cu atît mai insolubilă substanţa. De pildă, sulfatul de calciu (gipsul) are PS de ordinul 10 la minus 4. Sulfatul de bariu are PS de 10 la puterea minus 18. Ceea ce îl face de 10 milioane de ori mai puţin solubil decît gipsul. Aşa se explică de ce, în ciuda faptului că bariul este un metal toxic, sulfatul de bariu se bea ca substanţă de contrast în radiografiile digestive, în ciuda mediului puternic acid din stomac.

Mai trebuie să ne fixăm o noţiune: starea de oxidare. Cu cît mai negativă sau zero, cu atît mai mică. Cu cît mai pozitivă, cu atît mai mare. Starea de oxidare se exprimă în cifre întregi (doar statistic fracţionare uneori) însoţite de semnul plus sau minus. De pildă sulful poate avea, în ordine crescătoare, stările de oxidare: 2-, 1-, 0, 1+, 2+, 4+, 6+. Cu 2- îl găsim în sulfurile native. Cu 6+ îl găsim în sulfaţi. Stările de oxidare intermediare sunt de regulă instabile şi tind spre extreme. În funcţie de partenerul de reacţie un element într-o stare de oxidare intermediară, va fi, fie oxidant în raport cu un reducător, fie reducător în raport cu un oxidant mai puternic decît el. La fel se petrece şi cu multe metale tranziţionale: Cu, Fe, V, Mo, Mn etc. Îşi schimbă starea de oxidare după substratul pe care se fixează.

O altă proprietate a substanţelor este că, atunci cînd un cation de pildă, are de ales între mai mulţi anioni prezenţi în mediu, se va combina stabil cu cel cu care formează un compus cu cel mai mic PS. Cu alte cuvinte, la o competiţie între anioni, cîştigă anionul care formează precipitatul cel mai stabil. Aşa se face că, atunci cînd ionul de calciu dizolvat în apă are de ales între clorură şi sulfat, se va combina stabil cu sulfatul. Şi va precipita. Sunt fenomene fireşti, ce favorizează apariţia compuşilor cu cel mai scăzut nivel de energie, sau compuşi care ies din sistemul apos rapid. Gazele formate într-o reacţie în soluţie apoasă, de asemeni, tind să iasă din sistem, aşa cum fac şi substanţele insolubile. Diferă doar direcţia. De aceea precipitaţii se marchează cu semnul ↓, iar gazele cu ↑.

Întrucît elementele chimice de interes pentru noi aderă nu numai chimic, dar şi fizic şi steric (se „înţepenesc” în structuri găunoase mai complexe), voi folosi un cuplu de termeni: mobilizare-imobilizare. Mobilizare însemnînd trecerea a ceva din faza solidă în faza lichidă. Şi viceversa, pentru imobilizare.

Pentru metalele şi arsenul prezente în rocile de la Roşia, mobilizarea depinde mai mult de anionii prezenţi. Ei sunt destul de mulţi. Ba, ca să ne zăpăcească şi mai rău, unii cationi au darul să devină anioni, prin procese de oxidare sau de complexare.

Să listăm anionii posibili: sulful din sulfurile metalice native, trece prin oxidare de la (2-) sau (-1), la (4+), iar în final la (6+) şi dă anionul sulfat (2-). Vanadiul, de la (5+), trece tot la (5+), dar ca vanadat (3-). Arsenul trece de la (3+) la (5+) în forma arseniat (3-). Manganul trece de la (2+) la (6+) sub forma manganaţilor (2-), (3-)… Zincul, fierul, cuprul, cobaltul dau în timpul tratamentului cu cianuri tetra- sau hexaciano[metalul]aţi după caz. Molibdenul poate da molibdat. Aşa cum cromul poate da cromaţi şi dicromaţi. Clorurile apar de asemeni în sistem, la diferitele operaţii de corectarea a pH-ului cu acid clorhidric. De regulă, în natură, sulful este însoţit mai totdeauna de seleniu şi de telur, cu care se înrudeşte. Şi ele pot da seleniaţi şi teluraţi. Mai pot apărea sulfiţi, tiosulfaţi, arseniţi şi chiar peroxosulfaţi, dar cu toţii instabili, cu tendinţa de a se oxida sau reduce, după cum nimeresc în mediul acvatic. Teoretic pot apărea şi nitraţi din oxidarea amoniacului, dar, alături de arseniaţi, ei provin din activitatea biologică a unor microorganisme. Arseniaţii ies automat din sistem, iar nitraţii contribuie la hrana macrofitelor din vecinătate. Mai sunt şi alţi anioni despre care vom vorbi în treacăt, deoarece ei au ponderea foarte mică în chimismul general.

După cum vă daţi seama, cele mai multe elemente potenţial toxice sunt proteice, ceea ce complică mult schemele chimice. Nu vă îngrijoraţi încă. E ca în matematică. Se caută un termen care să facă şirul convergent în punctul dorit de inginer. Unelte sunt destule.

Să vedem acum cam cît material anionic avem de imobilizat.

Căutăm lista de chimicale şi recapitulăm, înmulţind totul cu 16, reprezentînd anii de exploatare.
Acid clorhidric soluţie 37% 36.800t (cca 13.500t acid clorhidric pur). Ceea ce dă cam tot atîtea cloruri solubile. Clorura nu e în sine toxică. Poate doar da hipertonie la concentraţii mari. Să vedem cît de mari ies în iazul de pe valea Corna. Volumul mare de diluare (cca 240 megatone) dă o concentraţie finală idealizată, de 0,005% (50mg/l). Cea mai mare parte din cloruri va fi însă adsorbită în cele 20 de megatone de feldspat cu care are şanse să facă chiar adduct*) ţinînd seama că feldspaţii au mare afinitate pentru cloruri (ceea ce face ca pînă la 3% din betoane să poată fi amendate cu clorură de calciu). Clorurile din apele iazului nu ar satura nici 1% din capacitatea de imobilizare sterică din structura feldspatului.
Hidroxid de sodiu 16.000t. Deşi soda caustică sună rău, la diluare şi neutralizare cu acizi, mare brînză nu rămîne în sistem. Sodiul nu este nociv. Chiar dacă ar rămîne cu totul în soluţie, am avea o concentraţie reziduală de 0,004% (40mg/l) în iaz. De 150 de ori mai diluat decît serul fiziologic, şi 1/50 din pragul de sensibilitate gustativă. De zeci de ori mai mult ion alcalin iese din feldspatul potasic la simplul contact cu apa. Şi tot ar rămîne apă puternic hipotonă.
Din motive didactice, sar la anionii principali din minereu. Sulfurile vor fi transformate mai devreme sau mai tîrziu în sulfaţi.
Dar cît sulfat poate rezulta din alterarea minereului şi a sterilului? Schemele tehnologice de neutralizare, concepute prin analiza a zeci materii clasificate litologic, cu toate conţinînd sulf seleniu şi telur, (ultimele două în cantităţi infime) indică o medie ponderată de 1,1% sulfuri metalice şi sulf nativ (dacă există). Ăsta e tot sulful natural, din care cel puţin 40% reprezintă metalele tranziţonalele şi arsenul legate în sulfuri. Ceea ce se traduce prin 0,66% sulf în echivalent de sulf elementar. Avem 215 megatone de rocă. Rezultă o cantitate de 1.419.000t de sulf, ce s-ar traduce teoretic în 4.257.000t de sulfat.
Ne uităm în lista de chimicale folosite în procesul tehnologic: Găsim sulfat de cupru hidratat cu 5 molecule de apă. Negljabil. Ar fi vorba de doar cîteva sute de tone de sulfat în 16 ani. Se adaugă o cantitate neprecizată de sulfiţi şi de sulfaţi rezultaţi din proceul detox, proveniţi din metabisulfit. Din cele 208.000t de metabisulfit, cel puţin 60% rămîn în soluţie sub formă de sulfat. Scăznd cationul alcalin, rezultă mai puţin de 100.000t de sulfat. Ceea ce ar rotunji sulfaţii de origine naturală la ameţitoarea cifră de, hai să zicem, 4,4 megatone de anion sulfat. Asta, în condiţii ideale. În altă parte vom face cunoştinţă cu antagonisme şi fenomene de ecranare care vor avea darul să scadă mult volumul real al sulfaţilor.
După cum vom vedea mai încolo, peste 99,99% din sulfaţii solubili se va regăsi precipitate sub forma gipsului. Rămîn în soluţie circa 24.000t (variabil), reprezentînd 10-100mg/l în funcţie de pH şi de temperatură. Cunosc ape minerale care conţin mai mult sulfat.

Iată că, din datele tehnologice începe să se contureze diferenţa mare între cele două văi: Roşia şi Corna.

Diferenţa va deveni flagrantă atunci cînd vom examina chimismul comparativ al cationilor. Întrucît el este strîns legat de chimismul anionilor cu ion metalic central, (aşa-numiţii -aţi feraţi, vanadaţi, cromaţi manganaţi etc.) voi trata tranziţionalele împreună cu anionul cian.

(va urma)

–––––––––-
*) un exemplu de adduct este amestecul de clorură de zinc cu oxid de zinc. Ambele substanţe toxice. Se formează imediat o masă albă de duritatea porţelanului. De aceea şi este folosit ca ciment în dentistică. Cînd adductul a reuşit, cimentul îşi pierde toxicitatea.

★ Despre chimismul postminier la Roşia Montană (I)

Posted in Soluţii alternative by Marius Delaepicentru on 2013/10/09

Articolul de faţă se adresează oamenilor raţionali cu oarece cunoştinţe de chimie, dar nu prea multe.

Studiind datele despre sursele de apă monitorizate pe durata a 10 ani de către RMGC, am observat că practic compoziţia lor chimică diferă atît în spaţiu cît şi în timp. Practic nu există o corelaţie certă între anotimpul, originea, regimul pluvial şi natura rocilor. Singurul parametru cu oarece legătură este pH-ul. Cu cît mai acid, cu atît mai mare mineralizaţia apelor.
Să trecem aşadar la problema propriu-zisă. Întrebarea este: de unde vine poluarea cu metale?

Răspunsul simplu este: din alterarea rocilor.

Cum?

În zăcămînt sunt cam patru feluri mari de roci, constituite din sute de minerale şi minerăluţe. La contactul cu oxigenul cu apa şi cu lumina, mineralele încep să se transforme. Unele se dizolvă, altele dau produşi tot insolubili. Nu e greu să ne dăm seama că suprafaţa de contact cu mediul, cu cît este mai mare, cu atît mai intensă va fi alterarea. De asemeni, cu cît durata de contact cu aceeaşi cantitate de solvent e mai mare, cu atît mai concentrată va ieşi soluţia de poluanţi. Prezenţa unora dintre microorganismele ce metabolizează metale este de asemeni importantă în calitatea outputului.


Aria de contact

La ora actuală, aria totală de contact este imposibil de estimat. Se pot face doar estimări macroscopice. Avem 22 de halde vechi, ce nu par a fi în vreun fel compactate, dar se întind pe zeci de hectare. Nu e greu să ne dăm seama că cu cît sunt mai mărunţite şi mai afînate, cu atît sunt mai generoase în poluanţi. Afînarea haldelor şi a rambleurilor înzeceşte aria expusă. Se adaugă eroziunea ce, prin ravenele de şiroire multiplică suprafaţa totală de contact.
Mai există două cratere, din care unul rambleiat. Alte zeci de hectare de rocă expusă degradării. Iar craterul Cetate pare a avea şi drenaj, ceea ce asigură scurgerea nestînjenită a poluanţilor în valea Roşia.
Mai sunt 140Km de galerii, din care au fost scoase de-a lungul vremii peste 2 megatone de rocă. Dacă socotim diametrul mediu de 4 metri*) rezultă alte 176ha de rocă expusă degradării, chiar dacă nu la vedere. (spre comparaţie, perimetrul minier nu are mai mult de 1200ha, din care jumătate nu va avea roca expusă.)

Durata de staţionare a apei

Intuitiv, ne dăm seama că băltirea duce la concentraţii mai mari de poluanţi Iar de băltire avem parte în toate cele trei forme de degradare: în galerii, în halde, în cratere. De reţinut că cu cît panta este mai mică, cu atît băltirea are o pondere mai mare. Dintre toate formele de acumulare şi deversare a apei băltinde, cea mai imprevizibilă este cea din subteran. Nu numai prin duratele mari de staţionare, dar şi prin fenomene accidentale de sifonare din galeriile părăsite. Cine ştie cîte ceva despre carstul subteran, ştie că sifoanele pot lua naştere natural. O galerie sinuoasă pe verticală, se poate umple, iar la un moment dat, sifonul se amorsează şi deversează mii de metri cubi de apă „stătută” printr-un izbuc pulsativ. Conformaţiile cu potenţial de sifonare nu sunt imposibile atunci cînd ai 140Km de galerii. Iar emergenţa aleatorie din galerii poate fi o explicaţie pentru compoziţia atît de capricioasă a apelor de mină în timp.

Am văzut aşadar cam cît de mare este aria rocilor supuse alterării naturale. Sunt mii de hectare macroscopice şi alte zeci de mii microscopice. La haldele de steril rezultat din flotaţie, aria unui metru cub poate depăşi şi 5ha. Şi sunt milioane de metri cubi. Din fericire, haldele se mai compactează şi natural, ceea ce scade mult aria specifică.

Am descris situaţia prezentă.

Ce e de făcut?

Nu e greu de intuit că distrugerea sistemului de galerii prin detonare reduce mult aria de expunere a rocii la alterare. Craterele rezultate au oricum aria limitată, iar durata de expunere la degradare are un gradient vertical. Mai mare sus, mai mică jos. Aria ce sporeşte prin adîncire, este compensată atît de reducerea ariei galeriilor cît şi de drenajul mai uşor de controlat. Haldele oricum vor fi compactate şi împrejmuite de şanţuri de drenaj, ceea ce reduce mult şi din aria de expunere microscopică. Sterilele colectate în iazul de decantare vor avea aria de expunere de maximum 363ha. Iar aria microscopică redusă doar la atît cît permite oglinda de apă. Adică, doar pe la coada iazului.

Avantajul iazului de decantare este evident. Nu numai că asigură recircularea apei, dar, prin pH-ul său alcalin, dă naştere unui chimism diferit de cel de pe valea Roşia. (voi detalia într-un articol viitor.) Nu greşim dacă considerăm sedimentele de acolo ca fiind o mare haldă întoarsă cu fundul în sus şi complet compactată. Mai mult, iazul de pe Corna poate fi folosit ca receptor şi neutralizator grosier de ape acide provenite de pe valea Roşia, datorită pH-ului ridicat, mai ales în situaţii de urgenţă (ruperi de nori).
De unde vine alcalinitatea iazului? Din megatona de var nestins ce va fi folosit la tratarea minereului.

Aşadar, pentru apele acide de pe valea Roşia să fie tratate, este nevoie a fi drenate într-un singur iaz de colectare. Doar acolo ele vor avea o compoziţie cît de cît previzibilă în timp. Cît timp RMGC le va exploata pentru extracţia aurului, apele acide vor înceta să mai polueze Abrudul şi Arieşul.
După încheierea proiectului minier, configuraţia terenului, reducerea ariei de alterare a rocilor va face mult mai simplă gestionarea scurgerilor. Iazul de ape acide va fi parte dintr-un sistem mai complex de captare şi epurare pentru uz casnic, industrial şi de salubrizare a cîtorva cursuri naturale de apă.

Aşadar, visul ecologiştilor de curăţenie va fi îndeplinit. Şi încă rapid. Nu însă fără efort. Efort pe care nu trebuie să îl facă ei. Îl va face exploatatorul. După încheierea proiectului, doar vrednicia primăriei, adică a aleşilor locali, va face diferenţa dintre bine şi rău.

Iată că nu am apucat să vorbesc despre chimism, ci despre lucruri mult mai simple. Am mutat şi discuţia despre microorganisme acolo, deoarece ea are aface mai mult cu chimismul intim decît cu aspectele ochiometrice şi de peisaj.

(va urma)

–––––––
*) în realitate sunt galerii înguste alternînd cu galerii largi şi cu domuri şi mai largi.

★ Peisaj cu chimicale la Roşia Montană (II)

Posted in Soluţii alternative, Teste by Marius Delaepicentru on 2013/09/11

(continuare din numărul trecut)

În articolul trecut am descoperit că aria de interes pentru exploatatorul minereurilor aurifere este deja poluată de multele mine istorice. Sute de ani s-a folosit mercurul pentru extracţie. El se mai foloseşte şi azi, deşi la scară mult mai mică. Sigur, nu cianurile sunt poluantul, ci metalele grele aflate încă în soluţie.

Aflarăm că exploatatorul, prin constrîngerile la utiliăţi, rezultate din negociere*), va fi nevoit să valorifice apa din iazuri (-le, actualmente toxice), ceea ce înseamnă că va fi nevoit ca, înainte de orice, să le amendeze pentru purificarea in situ. Din lista de chimicale am văzut că o bună parte vor fi folosite la neutralizarea şi inocuizarea deşeurilor, în toate cele trei stări de agregare.

În continuare vom vedea cu ochii minţii felul în care va decurge exploatarea, precum şi care sunt activităţile conexe.

Conform proiectului, vor fi, nu un crater de 8Km aşa cum acreditează ecologiştii, ci patru cratere de cîte… Dar mai bine să privim tabloul:

Rosia_spatiu
L-am pus aici doar pentru pedanţi. Voi face în continuare socotelile în hectare, simplificat, deoarece mi-am propus să determin producţia de locuri de muncă la hectar.

Lista mea, derivată din datele de mai sus, arată aşa:
Spaţiul

Cariere de minereu şi materiale de construcţii 214,1722ha
Halde şi depozite 177,9602ha
Uzina 51,3777ha
Spaţii de gestionare a apei (inclusiv canale de drenaj) 402,2276ha
Depozit minereu sărac 26,9743ha
Depozit pămînt excavat pentru amplasarea uzinei 4,1080ha
Depozit sol vegetal 39,7445ha
Alte destinaţii (drumuri, depozite, clădiri etc.) 511,1535ha
Total 1.061,6100ha
Arii neafectate 195,7064ha
Total 1,259,3164ha

Acum să comentăm fiecare poziţie din tabel.

Cele 214,1722ha alocate carierelor, cuprind cele patru cratere, plus o carieră de piatră de construcţii (pentru anrocament şi drumuri) şi una de gresie, al cărei rol nu îl văd, dar îl pot presupune: material de construcţie pentru pavaj şi eventual ca material de ranforsare a haldelor de steril şi ca material de umplutură pentru cratere, cînd va fi să se închidă afacerea.

În halde şi depozite (177,9602ha) am inclus atît halda principală de steril, ce va astupa o vale întreagă, cît şi depozitul de minereu sărac, scos şi pus deoprate. El ar urma a fi procesat în ultimii trei ani de exploatare.
Observaţii
Tehnologic, sterilul se va trimite sub formă de nămol subţire, printr-un sistem de conducte. Sa ales depozitarea sterilului fără aditivi de îngroşare, deoarece apa scursă din el se va colecta, pritr-un sistem de canale deschise, tot în iazul de decantare, de unde va fi refolosită. Ar mai fi fost soluţia deshidratării sterilului şi trimiterea lui pe cale pneumatică, însă ar halda ar deveni mare producător de pulberi.
Faţă de amînarea procesării minereului sărac am oarece obiecţii, deşi înţeleg că strategic este o alegere bună. Întîi faci ceva cheag şi abia apoi îţi permiţi să pierzi. Riscul este însă ca minereul sărac să nu mai fie procesat niciodată, ţinînd seama că rentabilitatea va fi prea mică, în ipoteza în care preţul aurului se va prăbuşi. Pentru gestionarea minereului sărac, contractorul trebuie să se angajeze, inclusiv pecuniar, că va face cumva să repare eventualul deranj.
Uzina va ocupa 51,3777ha şi un supliment de 4,1080ha reprezentînd depozitul de material rezultat din orizontalizarea terenului. E puţin probabil ca pămîntul acela să se întoarcă de unde a fost scos, deoarece contractul prevede ca uzina să rămînă aşa cum a lăsat-o exploatatorul. Pesemne, vreun grangur din guvern visează să vîndă fierul vechi, situaţie în care, nimeni nu se va mai preocupa să elibereze şi cele 4ha de depozit.
Un aspect interesant este că vor fi alocate pentru depozitul de sol vegetal, 39,7445ha. Solul va fi păstrat pentru refacerea peisajului. În prima fază, nu mai devreme de anul 9, cînd una din cariere îşi va fi încheiat rostul. Aşadar, „terraformarea” poate începe încă din anul 9. Craterele vor fi umplute cu rocă inertă, amestecată cu steril şi cu mult var. Prin carbonatarea naturală a varului-liant, terenul îşi va recăpăta fermitatea în mai puţin de un deceniu. Acelaşi fenomen va sta şi la baza secării iazului de decantare, ceea ce explică necesarul anual de 54.000t de var.
Cum era de aşteptat, o arie aproape dublă decît cea a carierelor, va fi ocupată de instalaţiile de gospodărire a apei: 402,2276ha (inclusiv canale de drenaj).
Studiind materialul, am descoperit că temerile mele iniţiale şi-au găsit liniştea relativă, de cînd am înţeles că tratarea apelor reziduale va fi făcută cu var (54.000t) şi cu floculanţi (510t/an). Aşadar, nu ape acide, ci ape alcaline. Ceea ce duce la un fenomen de autosigilare a fundului iazului. Agregatele rezultate din reacţiile de precipitare vor colmata porii rocii. Se adaugă caolinitul prezent în mod natural în minereu, pentru ca impermeabilizarea să se facă natural. Ca şi în cazul astupării craterelor de excavaţie, rolul varului (carbonatat în timp) este cel de consolidare a terenului. Fermitatea sedimentelor prin carbonatarea varului, va permite inclusiv deschiderea artificială a unei breşe în baraj, pentru a se relua circulaţia naturală a apei pe vale. În urmă va rămîne un teren mai mult sau mai puţin orizontal, unde se va putea amenaja chiar şi o bază de agrement, după numai patru decenii. Nu degeaba negociatorul a cerut ca iazul de decantare să fie eliberat de conducte şi de alte instalaţii. Apa va prelua niţel şi din sedimente, ce vor fi captate în aval, în lagune de epurare pasivă.

Proiectul cuprinde şi 511,1535ha, reprezentînd drumuri, spaţii de depozitare şi alte acareturi. Proiectul prevede ca drumurile rămase fără utilitate, să se revegeteze, ca de altfel fundul şi versanţii iazului de decantare.

Deşi tehnologia satisface pretenţiile de inocuitate**) cheltuielile de „terraformare” vor fi însemnate, dar lucrările de renaturalizare a ariei nu sunt imposibile. Cu atît mai uşor cu cît, solul vegetal va fi conservat aparte. Atît că totul va costa de zeci de ori mai mult decît amărîta de garanţie depusă de exploatator.

Într-un articol viitor voi reface socotelile despre rentabilitatea socială a terenului, după ce mi se mai sedimentează şi mie datele în cap.

–––––
*) I s-a interzis inclusiv accesul la conducta de 400mm de aducţiune pentru localităţile din zonă.
**) mai puţin norma de praf şi cea de zgomot, ultima, prevăzută a fi de 87dB, ce sigur nu va fi respectată, ţinînd seama de utilajele mari de concasare şi transport pe ţeavă, la care se adaugă zgomotul camioanelor de 150t şi cele 4 puşcări săptămînale.

%d blogeri au apreciat: